陈景润证明哥德巴赫猜想_陈景润证明哥德巴赫猜想过程艰辛
没有证明全文。
虽然陈景润在1966年发表了一篇论文,提出了一个与哥德巴赫猜想相关的命题,即任何大于等于7的奇数都可以表示成3个质数之和。
但是他的证明一直存在争议和错误。
目前该猜想仍未得到严格证明,但被广泛认为是成立的。
哥德巴赫猜想至今没有被彻底解决,陈景润证明的是1+2,而哥德巴赫猜想的内容是“任何一个偶数均可表示两个素数之和”,简称1+1。
1966年,陈景润宣布他证明了命题(1+2)。当时,他没有给出详细证明,仅简略地概述了他的方法。1973年,他发表了命题(1+2)的全部证明。
应该指出的是,在他宣布结果到发表全部证明的整整7年之中,没有别的数学家给出过命题(1+2)的证明,而且似乎国际数学界仍然认为命题(1+3)是最好的结果。因此,当陈景润在1973年发表了他的具有创造性的证明命题(1+2)的全部证明后,立即在国际数学界引起了强烈的反响,公认是一个十分杰出的成果,是对哥德巴赫猜想研究的巨大贡献。
反复验算论证得出的。陈景润的哥德巴赫猜想,也就是1+2,从提出到证明的发表共花了7年多的时间,经过长达7年的反复论证验算,最终直至完成,得到了世界的公认。
在现代数学史上,我国数学卷陈景润的名字与哥德巴赫猜想紧紧联系在一起。
被誉为光辉成就的“陈氏定理”将哥德巴赫猜想的证明推进了一大步,使中国在这一领域的研究上居世界领先地位。
1953年,陈景润毕业于厦门大学数学系。由于他对数论中一系列问题的出色研究,受到华罗庚教授的重视,被调入中国科学院数学研究所工作,后来就有了“ 罗庚慧眼识景润”的佳话。
虽然当时的生活条件非常艰苦,在仅有6平方米的小屋里陈景润坚持埋头于哥德巴赫猜想的研究,经过无数个日夜、几度寒暑的艰苦努 力, 终于取得了震惊世界的成就。
然而,陈景润付出的努力也是惊人的,用掉的演算草稿纸可以装满几个麻袋,并且积劳成疾。即使如此,躺在病榻上的他,仍锲而不舍 地耕耘着。陈景润在数论中其他著名问题,如高斯圆内格点问题、球内格点问题、塔里问题、华林问题等的研究上也做出了重要贡献。
陈景润是国际知名的大数学家,深受人们的敬重。但他并没有产生骄傲自满情绪,而是把功劳都归于祖国和人民。为了维护祖国的利益,他不惜牺牲个人的名利。
1979年,陈景润应美国普林斯顿高级研究所的邀请,去美国作短期的研究访问工作。普林斯顿研究所的条件非常好,陈景润为了充分利用这样好的条件,挤出一切可以节省的时间,拼命工作,连中午饭也不回住处去吃。有时候外出参加会议,旅馆里比较嘈杂,他便躲进卫生间里,继续进行研究工作。
正因为他的刻苦努力,在美国短短的五个月里,除了开会、讲学之外,他完成了论文《算术级数中的最小素数》,一下 子把最小素数从原来的80推进到16。
这一研究成果,也是当时世界上最先进的。
1956年,中国的王元证明了“3 + 4”。稍后证明了 “3 + 3”和“2 + 3”
1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1 + 5”, 中国的王元证明了“1 + 4”。
1966年,中国的陈景润证明了 “1 + 2 ”。 1978年,陈景润证明了“1+1”上限公式:r(N)≤7.8342×∏{(p-1)/(p-2)}∏{1-1/{(p-1)^2}}×N/(logN)^2,已知: 2∏{(p-1)/(p-2)}∏{1-1/{(p-1)^2}}{N/ln^2(N)}≥1.32,N/(logN)^2≥(2.7182^2)/(2^2)≥1.84,r(N)下限》1。
中国数学家陈景润证明了“任何一个充分大的偶数都可以表示成一个素数与另一个素因子不超过2个的数之和”,简称“1 2”。这是迄今世界上对“哥德巴赫猜想”研究的最佳成果。
陈景润。是我国著名的数学家。